

| USN |  |  |  |  |  |  |  |  |  |  |  |
|-----|--|--|--|--|--|--|--|--|--|--|--|
|-----|--|--|--|--|--|--|--|--|--|--|--|

## Fifth Semester B.E. Degree Examination, June/July 2015 **Software Engineering**

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

#### PART – A

| 1 | a.       | What is Software Engineering?                                                                                   | (02 Marks)               |
|---|----------|-----------------------------------------------------------------------------------------------------------------|--------------------------|
|   | b.       | List the attributes of good software system and key challenges facing software en                               |                          |
|   | c.       | What are legacy systems? Explain components of legacy systems.                                                  | (10 Marks)               |
|   | 0.       | what are legacy systems: Explain components of legacy systems.                                                  | (08 Marks)               |
| 2 | a.       | Explain dimensions of dependability properties and system properties that are                                   | related to               |
|   |          | dependability.                                                                                                  | (08 Marks)               |
|   | b.       | Explain the approaches to improve reliability.                                                                  | (03 Marks)               |
|   | C.       | With figure explain the phases of RUP.                                                                          | (05 Marks)               |
|   | d.       | Explain testing phases with figure.                                                                             | (04 Marks)               |
| 3 | a.       | Distinguish between functional and non functional requirements with example.                                    | (04 Marks)               |
| U | b.       | Explain the types of non functional requirements with example.                                                  | (04 Marks)<br>(06 Marks) |
|   | c.       | Identify the stakeholders of ATM system and classify them according to viewpoint                                | (co marks)               |
|   |          |                                                                                                                 | (10 Marks)               |
| 4 | 0        | Evaloin any 2 types of chiest we dely in detail                                                                 |                          |
| 4 | a.<br>b. | Explain any 2 types of object models in detail.<br>Explain state machine model of micro oven.                   | (08 Marks)               |
|   | с.       | Differentiate between milestones and deliverables.                                                              | (06 Marks)<br>(02 Marks) |
|   | d.       | List the activities of risk management with figure.                                                             | (02 Marks)<br>(04 Marks) |
|   |          |                                                                                                                 | (•••••••)                |
|   |          | PART – B                                                                                                        |                          |
| 5 | a.       | Explain client server architecture with example.                                                                | (06 Marks)               |
|   | b.       | Explain with figures centralized control and event driven systems.                                              | (10 Marks)               |
|   | c.       | List the proposals made about how to identify object classes.                                                   | (04 Marks)               |
| 6 | a.       | What is pair programming? Write its advantages.                                                                 | (04 Marks)               |
|   | b.       | What is extreme programming? List principles of agile method.                                                   | (06 Marks)               |
|   | c.       | Explain activities involved in reengineering process with figure.                                               | (10 Marks)               |
| X |          |                                                                                                                 |                          |
| 7 | a.       | Write the difference between verification and validation.                                                       | (10 Marks)               |
|   | b.       | Explain the clean room software development process with figure in detail.<br>List classes of interface errors. | (05 Marks)               |
|   | c.       | List classes of litterface errors.                                                                              | (05 Marks)               |
| 8 |          | Write short notes on the following:                                                                             |                          |
|   | a.       | Factors governing staff selection.                                                                              |                          |
|   | b.       | PCMM levels                                                                                                     |                          |
|   | c.       | Submodels of COCOMO II                                                                                          |                          |
|   | d.       | Maslow's hierarchy of needs.                                                                                    | (20 Marks)               |
|   |          |                                                                                                                 |                          |

\* \* \*



**10IS51** 

|        |       |                                                                                          | 2                       |
|--------|-------|------------------------------------------------------------------------------------------|-------------------------|
| USN    |       |                                                                                          | 10CS52                  |
|        |       | Fifth Semester B.E. Degree Examination, June/July 2015                                   |                         |
|        |       | Systems Software                                                                         |                         |
| Tim    | ne: 3 |                                                                                          | arks:100                |
|        |       | Note: Answer FIVE full questions, selecting<br>at least TWO questions from each part.    | .63                     |
| 1      | a.    | $\frac{PART - A}{Give any two differences between SIC and SIC/XE machine architecture.}$ | Q. Manha                |
| -      | b.    | Explain in detail the architecture of a SIC/XE machine.                                  | (04 Marks)<br>(10 Marks |
|        | c.    | Write a subroutine in SIC/XE to read a 100-byte record from a device 'F5' into           | o BUFFEF                |
|        |       | use immediate and register-to-register instructions.                                     | (06 Marks               |
| 2      | a.    | What is a forward reference? How to solve this forward reference in assembler?           | (04.34 1                |
| -      | b.    | What are the 3 different records used in object program and write their formats?         | (04 Marks<br>(06 Marks  |
|        | с.    | Generate the object code for the instructions shown below:                               | (10 Marks               |
|        |       | 1) 0006 CLOOP +JSUB RDREC                                                                | (IU Mui KS              |
|        |       | 2) 0017 J CLOOP                                                                          |                         |
|        |       | 3) 0020 LDA #3                                                                           |                         |
|        |       | 4) 103C +LDT #4096                                                                       |                         |
|        |       | 5) 002A J @RETADR                                                                        |                         |
|        |       | Note: JSUB = 8, J = 3C, LDA = 00, LDT = 74, RDREC = 1036, RETADR = 0030                  | )                       |
| 3      | a.    | Enlist the various machine independent assembler features.                               | (05 Marks               |
| -      | b.    | With suitable example, explain the use of LTORG assembler directive.                     | (05 Marks               |
|        | c.    | Explain the multi pass assembler with example.                                           | (10 Marks               |
| 4      | a.    | What are basic functions of a loader? Develop an algorithm for a bootstrap loader.       | (10 Marta               |
|        | b.    | What is the difference between linkage editor and linking loader?                        | (10 Marks)<br>(04 Marks |
|        | с.    | Explain various data structures used for a linking loader.                               | (04 Marks               |
|        |       |                                                                                          | (00 11111115            |
| 5      | 0     | Explain the relation has been a divised in $1 - B$                                       |                         |
| 5      | a.    | Explain the relationship between editing and viewing buffers with relevant diagram       | m.<br>(10 Marks         |
|        | b.    | Differentiate between tracing and traceback functions in a debugging system.             | (04 Marks               |
|        | c.    | Mention the different precessions for future assembler and compiler consister            |                         |
|        |       | with debugging system.                                                                   | (06 Marks)              |
| 6      | a.    | List the different tables used for a macroprocessor. Explain their functions.            |                         |
| U      |       | Explain with example, concatenation of macro parameter and generation of unique          | (08 Marks               |
| 1      | Ū     | and plant while example, concatenation of macro parameter and generation of unique       | (12 Marks               |
| 7      | a.    | Explain the structure of LEX specification with example.                                 | (10 Marks               |
| $\sum$ | b.    | What is symbol table? Write a LEX program to implement symbol table.                     | (10 Marks               |
| -      |       |                                                                                          |                         |
| 8      | a.    | What is YACC? Explain the different sections used in writing the YACC specific           |                         |
|        | b.    | Explain conflicts in YACC with example.                                                  | (10 Marks)              |
|        | с.    | Write YACC program to check whether the given string $b^n a^n (n > 0)$ is an             | (05 Marks               |
|        |       | grammar or not.                                                                          |                         |
|        |       | Similar of not,                                                                          | (05 Marks)              |
|        |       |                                                                                          |                         |
|        |       | * * * * *                                                                                |                         |

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

\* \* \* \* \*



(05 Marks)

(05 Marks)

(04 Marks)

(04 Marks)

(03 Marks)

(06 Marks)

### Fifth Semester B.E. Degree Examination, June/July 2015 Operating Systems

Time: 3 hrs.

1

2

Max. Marks:100

# Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

#### PART – A

- a. What are the activities for which the operating system is responsible for, in connection with : i) Process management ii) File management. (10 Marks)
  - b. Explain any two types of system calls.
  - c. What are virtual machines? Explain the benefit of creating virtual machines.
- a. With a diagram, explain different states of a process.
- b. Differentiate between direct and indirect interprocess communication.
- c. Explain any three multithreading models in brief.
- d. Consider the following set of processes :

| Process        | Arrival time | Burst time |
|----------------|--------------|------------|
| P <sub>1</sub> | 0            | 5          |
| P <sub>2</sub> | 1            |            |
| P <sub>3</sub> | 2            | 4          |

Compute average turn around d time and average waiting time using FCFS, preemptive SJF and RR (quantum -4). (09 Marks)

- 3 a. Explain Peterson's solution to critical section problem.
  - b. Describe the mutual exclusion implementation with TestAndSet(). (06 Marks)
  - c. Mention three classical problems of synchronization. Explain any one in detail. (08 Marks)
- 4 a. Consider the following snapshot of a system :

| "S             | Allocation |   |   | Max |   |   | Available |   |   |
|----------------|------------|---|---|-----|---|---|-----------|---|---|
| N.             | Α          | В | C | A   | В | С | Α         | В | С |
| P <sub>0</sub> | 0          | 1 | 0 | 7   | 5 | 3 | 3         | 3 | 2 |
| P <sub>1</sub> | 2          | 0 | 0 | 3   | 2 | 2 |           |   |   |
| P <sub>2</sub> | 3          | 0 | 2 | 9   | 0 | 2 |           |   |   |
| $P_3$          | 2          | 1 | 1 | 2   | 2 | 2 |           |   |   |
| P4             | 0          | 0 | 2 | 4   | 3 | 3 |           |   |   |

Answer the following questions using banker's algorithm

- i) What is the content of the matrix need?
- ii) Is the system in a safe state?
- iii) If a request from process P<sub>1</sub> arrives for (1, 0, 2), can the request be granted immediately? (12 Marks)
- b. For the following resource-allocation graph, write the corresponding wait for graph.

(04 Marks)



c. Explain the different methods used to recover from deadlock.

(04 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2

### PART – B

| 5 | a.       | With a supporting paging hardware, explain in detail concept of paging with an e<br>a 32 –byte memory with 4 – type pages with a process being 16-bytes. How ma<br>reserved for page number and page offset in the logical address. Suppose the log | any bits are             |
|---|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|   |          | is 5, calculate the corresponding physical address, after populating memory and                                                                                                                                                                     |                          |
|   | 4        | Discuss on the performance of demand paging                                                                                                                                                                                                         | (10 Marks)               |
|   | b.       | Discuss on the performance of demand paging.<br>What is Belady's anomaly? Explain with an example.                                                                                                                                                  | (05 Marks)<br>(05 Marks) |
|   | c.       | what is belady's anomaly: Explain with an example.                                                                                                                                                                                                  | (05 Marks)               |
| 6 | a.       | Mention any five :<br>i) File attributes                                                                                                                                                                                                            |                          |
|   |          | ii) File operations.                                                                                                                                                                                                                                | (05 Marks)               |
|   | b.       | With supporting diagrams distinguish between single-level and two-level director                                                                                                                                                                    |                          |
|   | 0        | Compare contiguous and linked allocation methods for disk space.                                                                                                                                                                                    | (05 Marks)<br>(05 Marks) |
|   | c.<br>d. | Explain bit vector free-space management technique.                                                                                                                                                                                                 | (05 Marks)<br>(05 Marks) |
|   | u.       | Explain on vector nee space management teeninque.                                                                                                                                                                                                   | (05 10141 K3)            |
| 7 | a.       | With an illustrative example, distinguish between SSTF, FCFS, SCAN and LC                                                                                                                                                                           | OOK DISK                 |
|   |          | schedulings.                                                                                                                                                                                                                                        | (08 Marks)               |
|   | b.       | What are boot block and bad blocks? Explain.                                                                                                                                                                                                        | (06 Marks)               |
|   | C.       | Explain the goals and principles of protection.                                                                                                                                                                                                     | (06 Marks)               |
| 0 |          | White short notes and                                                                                                                                                                                                                               |                          |
| 8 | a.       | Write short notes on :<br>Design principles of Linux system                                                                                                                                                                                         |                          |
|   | a.<br>b. | Linux virtual memory system                                                                                                                                                                                                                         |                          |
|   | с.       | Segmentation                                                                                                                                                                                                                                        |                          |
|   | d.       | LRU page replacement algorithm.                                                                                                                                                                                                                     | (20 Marks)               |
|   | 92.0     |                                                                                                                                                                                                                                                     | . ,                      |
|   |          |                                                                                                                                                                                                                                                     |                          |
|   |          | * * * *                                                                                                                                                                                                                                             |                          |

| USN |  |
|-----|--|
|-----|--|

Fifth Semester B.E. Degree Examination, June/July 2015 Database Management Systems

Time: 3 hrs.

1

2

Max. Marks:100

# Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

#### PART – A

- a. Discuss the main characteristics of the database approach. (08 Marks)
  b. Explain the three-schema architecture. What is the difference between logical data independence and physical data independence? (08 Marks)
  - independence and physical data independence? (08 Marks)c. Define the database and briefly explain the implicit properties of the database. (04 Marks)
- a. Define the following terms with an example:
  - i) Composite attribute
  - ii) Complex attribute
  - iii) Participation constraints
  - iv) Cardinality ratio
  - v) Ternary relationship.
  - b. Design an ER diagram for an insurance company. Assume suitable entity types like CUSTOMER, AGENT, BRANCH, POLICY, PAYEMENT and the relationship between them. (10 Marks)
- 3 a. Briefly discuss how the different updata operations on a relation deal with constraint violations? (08 Marks)
  - b. Consider the following schema for a COMPANY database: EMPLOYEE (Fname, Lname, <u>Ssn</u>, Address, Super-ssn, Salary, Dno) DEPARTMENT (Dname, <u>Dnumber</u>, Mgr-ssn, Mgr-start-date) DEPT-LOCATIONS (<u>Dnumber</u>, <u>Dlocation</u>) PROJECT (Pname, <u>Pnumber</u>, Plocation, Dnum) WORKS-ON (<u>Essn</u>, <u>Pno</u>, Hours) DEPENDENT (<u>Essn</u>, <u>Dependent-name</u>, Sex, Bdate, Relationship)
    - Write the queries in relational algebra.
    - i) Retrieve the name and address of all employees who work for 'Sales' department.
    - ii) Find the names of employees who work on all the projects controlled by the department number 3.
    - iii) List the names of all employees with two or more dependents.
    - iv) Retrieve the names of employees who have no dependents. (12 Marks)

a. Consider the database schema of Fig.Q.3(b), write the SQL query for the following:

- i) List the names of managers who have at least one dependent.
- ii) Retrieve the list of employees and the projects they are working on, ordered by department and, within each department, ordered alphabetically by last name, first name.
- iii) For each project, retrieve the project number, the project name, and the number of employees who work on that project.
- iv) For each project on which more than two employees work, retrieve the project number, the project name, and the number of employees who work on the project.
- v) For each project, retrieve the project number, the project name, and the number of employees from department 4 who work on the project. (10 Marks)

4

(10 Marks)

(05 Marks)

- b. List and explain the basic data types available for attributes in SQL and give example.
- c. Explain how the GROUP BY clause works. What is the difference between the WHERE and HAVING clause? (05 Marks)

#### PART – B

Explain insert, delete and update statements in SQL and give example for each. 5 a. (08 Marks) Write a note on: b. i) Views in SQL Aggregate functions in SQL ii) Database stored procedures and functions. iii) (12 Marks) Explain the informal design guidelines for relation schemes. 6 a. (08 Marks) Define and explain the first, second and third normal forms. b. (12 Marks) a. Define multivalued dependency. Explain 4NF with an example. 7 (10 Marks) b. Let  $R = \{Ssn, Ename, Pnumber, Pname, Plocation, Hours\}$  and  $D = \{R_1, R_2, R_3\}$  where  $R_1 = EMP = {Ssn, Ename}$  $R_2 = PROJ = \{Pnumber, Pname, Plocation\}$  $R_3 = WORKS-ON = {Ssn, Pnumber, Hours}$ The following functional dependencies hold on relation R.  $F = {Ssn \rightarrow Ename; Pnumber \rightarrow {Pname, Plocation};$  $\{Ssn, Pnumber\} \rightarrow Hours\}$ Prove that the above decomposition of relation R has the lossless join property. (10 Marks) a. Draw a state diagram and discuss the typical states that a transaction goes through during 8 (10 Marks) execution. b. Explain the problems that can occur when concurrent transactions are executed. Give example. (10 Marks)



## Fifth Semester B.E. Degree Examination, June/July 2015 Computer Networks – I

Time: 3 hrs.

Max. Marks:100

# Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

### PART - A

| 1 | a.       | What is data communication? What are the five components of data communication                                                                                                                             | on system?<br>(06 Marks)                             |
|---|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|   | b.<br>c. | Explain the OSI reference model, listing the functions of each layer in brief.                                                                                                                             | (10 Marks)<br>(10 Marks)<br>(04 Marks)               |
| 2 | a.       | Using Shannon's theorem, compute the maximum bit rate for a channel having a b of $3100 \text{ H}_2$ and signal to noise ratio of 20 db.                                                                   | and width<br>(06 Marks)                              |
|   | b.<br>с. |                                                                                                                                                                                                            | ne coding<br>(06 Marks)<br>(08 Marks)                |
| 3 | a.<br>b. |                                                                                                                                                                                                            | (06 Marks)                                           |
|   | о.<br>с. |                                                                                                                                                                                                            | (08 Marks)<br>(06 Marks)                             |
| 4 | a.       | <ul> <li>Given the data word 1001 and divisor 1011 :</li> <li>i) Show the generation code word at the sender site</li> <li>ii) Show the checking of code word at maximum site (common an error)</li> </ul> |                                                      |
|   | b.<br>c. | Explain process of error detection and error detection using block coding.<br>What is internet check sum? List the steps under taken by sender to calculate check                                          | (10 Marks)<br>(06 Marks)<br>k sum.lss.<br>(04 Marks) |
|   |          | PART – B                                                                                                                                                                                                   |                                                      |
| 5 | a.<br>b. |                                                                                                                                                                                                            | ach of the<br>(08 Marks)<br>(06 Marks)               |
|   | с.       | What is framing? With necessary sketches explain bit stuffing and unstuffing.                                                                                                                              | (06 Marks)<br>(06 Marks)                             |
| 6 | b.       | Mention different categories of standard Ethernet and explain implementation of 5 – thick Ethernet.<br>Mention the five goals of fast Ethernet. And give the import                                        | (06 Marks)<br>of 10 base<br>(08 Marks)<br>tance of   |
|   |          |                                                                                                                                                                                                            | (06 Marks)                                           |
| 7 | a.<br>b. | Explain the following connecting devices :                                                                                                                                                                 | (06 Marks)                                           |
|   | c.       |                                                                                                                                                                                                            | (08 Marks)<br>(06 Marks)                             |
| 8 | a.<br>b. |                                                                                                                                                                                                            | (10 Marks)<br>(10 Marks)                             |
|   |          | * * * *                                                                                                                                                                                                    |                                                      |

# Fifth Semester B.E. Degree Examination, June/July 2015 Formal Languages and Automata Theory

Time: 3 hrs.

1

2

Max. Marks:100

#### Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

#### PART – A

- Design a DFA to read strings mode up of letters "CHARIOT" and recognize these strings a. that contains the word "CAT" as a substring. (08 Marks)
  - b. Draw DFA to accept the language  $L = \{\omega : \omega \text{ has add number of } 1\text{ 's and followed by even}$ number of 0's. Completely define DFA and transition function. (06 Marks)
  - c. Convert the following NFA to its equivalent DFA.
- Prove that if L = L(A) for some DFA, then there is a regular expression R such that a. L = L(R). (06 Marks)
  - b. For the following DFA, obtain regular expressions  $R_{ij}^{(0)}$  and  $R_{ij}^{(1)}$ .

| States                | Σ                     |                       |
|-----------------------|-----------------------|-----------------------|
| States                | ×0×                   | 1                     |
| $\rightarrow q_1$     | <b>q</b> <sub>2</sub> | <b>q</b> <sub>1</sub> |
| <b>q</b> <sub>2</sub> | <b>q</b> <sub>3</sub> | <b>q</b> 1            |
| <b>q</b> <sub>3</sub> | <b>q</b> <sub>3</sub> | <b>q</b> <sub>2</sub> |

Construct NFA for regular expression  $V = (01 + 10)^+$ . c.

- State and prove pumping Lemma for regular languages. 3 a.
  - b. Show that  $L = \{A^{n!} | u \ge 0\}$  is not regular.
  - c. Construct 0 minimum automation equivalent to given automation 'M' whose transition table given below :

| States                | input                 |                       |  |  |  |
|-----------------------|-----------------------|-----------------------|--|--|--|
| States                | 0                     | 1                     |  |  |  |
| $\rightarrow q_0$     | $q_0$                 | <b>q</b> <sub>3</sub> |  |  |  |
| <b>q</b> <sub>1</sub> | <b>q</b> <sub>2</sub> | <b>q</b> 5            |  |  |  |
| q <sub>2</sub>        | <b>q</b> <sub>3</sub> | <b>q</b> <sub>4</sub> |  |  |  |
| <b>q</b> <sub>3</sub> | $q_0$                 | <b>q</b> 5            |  |  |  |
| q <sub>4</sub>        | $q_0$                 | <b>q</b> <sub>6</sub> |  |  |  |
| <b>q</b> <sub>5</sub> | $q_1$                 | <b>q</b> <sub>4</sub> |  |  |  |
| q <sub>6</sub> *      | $q_1$                 | <b>q</b> <sub>3</sub> |  |  |  |

(10 Marks)

(07 Marks)

(06 Marks)

(07 Marks)

What is a grammer? Explain the classification of grammers with examples. a. b.

- Obtain the grammer to generate the following languages :
  - i)  $L = \{ \omega : n_a(\omega) \mod 2 = 0 \text{ where } \omega \in (a, b)^* \}$
  - ii)  $L = \{ \omega : \omega \text{ is a palindrome, where } \omega \in (a, b)^* \}$
  - iii)  $L = a^n b^{2n} | u \ge 1$ .
- c. Show that the following grammer is ambiguous :  $S \rightarrow a \mid Sa \mid bSS \mid SSb \mid SbS.$

1 of 2

(05 Marks)

(06 Marks)

(09 Marks)

(05 Marks)

(05 Marks)

4



## PART – B

| 5 | а.<br>b.<br>c.       | Construct PDA for the language and simulate this PDA<br>$L = \{a^i b^j c^k   j = i + k, i, k \ge 0.$<br>Define PDA. Explain the language accepted by PDA.<br>Explain the PDA with two stocks. | (10 Marks)<br>(05 Marks)<br>(05 Marks)  |
|---|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 6 | a.                   | Simplify the grammer by eliminating useless productions.<br>S AB<br>$A \rightarrow a$<br>$B \rightarrow C \mid b$<br>$C \rightarrow D$<br>$D \rightarrow E \mid bC$                           |                                         |
|   | b.                   | $E \rightarrow d \mid Ab.$<br>Convert the following CFG to CNF.<br>$S \rightarrow aB \mid bA$<br>$A \rightarrow a \mid aS \mid bAA$                                                           | (06 Marks)                              |
|   | c.                   | $B \rightarrow b \mid aS \mid aBB$ .<br>Prove that context free languages are closed under union, concatenation and star.                                                                     | (06 Marks)<br>(08 Marks)                |
| 7 | a.<br>b.             | Explain the programming techniques for turing machine.<br>Construct a TM for $L = \{a^u b^u c^u   u \ge 1\}$ . Give the graphical representation for th<br>TM.                                | (10 Marks)<br>ne obtained<br>(10 Marks) |
| 8 | a.<br>b.<br>c.<br>d. | Explain the following :<br>Post correspondence problem<br>Recursively enumerable language<br>Recursive languages<br>Universal languages.                                                      | (20 Marks)                              |
|   |                      | * * * * *                                                                                                                                                                                     |                                         |